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Motivation of our PASC project
1. Introduction 2.Model 3. Precision 4. Performance 5. Conclusion

Adapt legacy code ORB5 [Tran, 1999, Jolliet, 2009] to new architectures such
as GPUs

Keep portability ⇒ OpenACC directive-based approach

Investigate alternative field representation (PIF instead of PIC)

Modularize data structures for easier maintenance
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GK-engine features
1. Introduction 2.Model 3. Precision 4. Performance 5. Conclusion

Physics:
Gyrokinetic equations of particle motion

guiding center trajectory
(mainly along B)

gyroscopic motion

Slab geometry
Sheared magnetic field
Electrostatic, collisionless instabilities
Adiabatic electrons

Numerics:
Runge-Kutta of fourth order time integrator
Intra-node multi-threading with OpenMP or OpenACC
Inter-node MPI communication with domain decomposition and cloning
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Magnetic field and anisotropy
1. Introduction 2.Model 2.1 Framework 2.2 Implementation 3. Precision 4. Performance 5. Conclusion

⇒

Toroidal (z) and poloidal (y) magnetic field with radially-dependent (x) shear:

B(x) = Bzez +By(x)ey q(x) =
Ly

Lz

Bz

By

Strong anisotropy of turbulence along/across field lines:

[Fasoli, 2016]
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Vlasov-Maxwell system of equations
1. Introduction 2.Model 2.1 Framework 2.2 Implementation 3. Precision 4. Performance 5. Conclusion

Distribution function:

f = f0(R, v//,µ) + δf(R, v//,µ, t)
v//

v⊥ → µ =
mv2

⊥
2B

Vlasov:
df

dt
= 0 ⇒ d δf

dt
= −dR

dt
· ∂f0
∂R

−
dv//
dt

∂f0
∂v//

Equations of motion:
dR

dt
= v//b︸︷︷︸

parallel motion

+
µ

eB?
//

b ∧∇B︸ ︷︷ ︸
∇B drift

+
1

B?
//

b ∧∇〈φ〉︸ ︷︷ ︸
E∧B drift

dv//
dt

= − e

m
b ·∇〈φ〉

dµ

dt
= 0

Quasi-neutrality equation:∫
n0e

Te
(φ− φ̄)η d3x+

∫
m

eB2
n0∇⊥φ ·∇⊥η d3x =

∫
δf〈η〉 d3x d3v
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Particle and field representations
1. Introduction 2.Model 2.1 Framework 2.2 Implementation 3. Precision 4. Performance 5. Conclusion

Marker discretization:

δf(R, v//,µ, t) =

Np∑
p=1

m

2πB?
//

wp(t)δ
(
R−Rp(t)

)
δ
(
v// − v//p(t)

)
δ
(
µ− µp

)
B-spline field representation (PIC method):

φ(x, y, z) =

Nx+p∑
i=1

Ny∑
j=1

Nz∑
k=1

φijkΛi(x)Λj(y)Λk(z)

Fourier mode field representation (PIF method):

φ(x, y, z) =

Nx+p∑
i=1

nmax∑
n=nmin

−nqi+∆m∑
m=−nqi−∆m

φ̃imnΛi(x)e
2πi(my/Ly+nz/Lz)

Field aligned ⇔ k// ∼ 0 ⇔ m+ nq(x) ∼ 0
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Stages of a time step
1. Introduction 2.Model 2.1 Framework 2.2 Implementation 3. Precision 4. Performance 5. Conclusion

Guiding center data Larmor ring data Field data

build Larmor deposit

solve

get fieldsgyroaverage

push
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Energy conservation
1. Introduction 2.Model 3. Precision 3.1 Linear 3.2Non-linear 4. Performance 5. Conclusion

Single Ion-Temperature-Gradient (ITG) mode (m, n) = (−49, 35)
(physical parameters from [Görler, 2016])
Convergence with number of finite elements versus PIF:
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The saturation level depends on the other parameters.
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ITG turbulence
1. Introduction 2.Model 3. Precision 3.1 Linear 3.2Non-linear 4. Performance 5. Conclusion

ITG non-linear simulation

radial direction

Ion temperature
Logarithmic gradient

Full Fourier spectrum (15 toroidal modes times 11 poloidal modes)
PIC method:

time
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Energy conservation
1. Introduction 2.Model 3. Precision 3.1 Linear 3.2Non-linear 4. Performance 5. Conclusion

Check energy conservation over time:

time

en
er

gy

PIC: Epot

PIC: Ekin
PIC: Epot+Ekin
PIF: Epot

PIF: Ekin
PIF: Epot+Ekin

Error with PIF method always lower than with PIC

Noé Ohana - PASC17 10 / 17



Sorting particles in grid cells
1. Introduction 2.Model 3. Precision 4. Performance 4.1 PIC 4.2 PIF 4.3 Scalability 5. Conclusion

PIC, 32 nodes, 128M particles, 128× 512× 128 grid cells
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* Intel Xeon E5-2690

** NVIDIA Tesla P100

Sorting interesting for cubic splines, not for quadratic
GPU** up to 3.5 times faster than CPU*
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Scanning number of toroidal modes
1. Introduction 2.Model 3. Precision 4. Performance 4.1 PIC 4.2 PIF 4.3 Scalability 5. Conclusion

PIF, 32 nodes, 128M particles, 128 radial cells, Nm = 11
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Wall clock time roughly proportional to Nn
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Scanning number of poloidal modes
1. Introduction 2.Model 3. Precision 4. Performance 4.1 PIC 4.2 PIF 4.3 Scalability 5. Conclusion

PIF, 32 nodes, 128M particles, 128 radial cells, Nn = 15
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Wall clock time scales less than linearly with Nm because exponential is
computed with prefactor successive multiplications.
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Parallel scalability of PIC on CPU
1. Introduction 2.Model 3. Precision 4. Performance 4.1 PIC 4.2 PIF 4.3 Scalability 5. Conclusion

Physics-based weak scaling, PIC, quad. splines, 12 OpenMP threads per node
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Sorting useful for large size systems
Number of particle per cell decreases, could be avoided with 2D domain
decomposition (see A. Jocksch’s presentation)
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Parallel scalability of PIF on GPU
1. Introduction 2.Model 3. Precision 4. Performance 4.1 PIC 4.2 PIF 4.3 Scalability 5. Conclusion

Physics-based weak scaling, PIF, quadratic splines, 1 GPU per node
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Number of particles per mode increases ⇒ atomic conflicts
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Conclusion
1. Introduction 2.Model 3. Precision 4. Performance 5. Conclusion

What to take home:
Spline order: choice for best time-to-solution depends on required
precision.
PIC or PIF: PIF is more precise than PIC, but can be slower if many
Fourier modes are kept.
CPU or GPU: GPU is about 3 times faster than CPU for PIC (on Piz
Daint), and essential for PIF.

Future work:
Apply those results to application runs with ORB5 (see A. Scheinberg’s
poster and E. Lanti’s presentation)
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Power balance
1. Backup slides 1.1 Physics 1.2Numerics

Balance equation dEpot

dt = −dEkin

dt

Potential energy Epot =
∫

1
2e〈φ〉f d3x d3v

Kinetic energy Ekin =
∫ (

1
2mv2// + µB

)
f d3x d3v

Linear growth rate

γpot =
1
2
d ln(Epot)

dt computed by finite difference in time

γkin = −1
2Epot

dEkin

dt computed instantaneously at each timestep
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Exponential computation
1. Backup slides 1.1 Physics 1.2Numerics

Algorithm 1 Explicit method
for n ∈ [nmin, nmax] do

einz = exp(2πinz/Lz)
for m ∈ [−nq−∆m,−nq+∆m] do

eimy = exp(2πimy/Ly )
... = ...× eimy × einz

end for
end for

Algorithm 2 Prefactor method
eiz = exp(2πiz/Lz)
einz = eiz^nmin

for n ∈ [nmin, nmax] do
eiy = exp(2πiy/Ly )
eimy = eiy^(−nq −∆m)
for m ∈ [−nq−∆m,−nq+∆m] do
... = ...× eimy × einz
eimy = eimy × eiy

end for
einz = einz × eiz

end for
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