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@ Physical framework
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3. Precision of physical results
@ Linear simulations

@ Non-linear simulations
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@ PIF
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@ Adapt legacy code ORBS5 [Tran, 1999, Jolliet, 2009] to new architectures such
as GPUs

@ Keep portability = OpenACC directive-based approach
@ Investigate alternative field representation (PIF instead of PIC)

@ Modularize data structures for easier maintenance
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@ Physics:
@ Gyrokinetic equations of particle motion

guiding center trajectory
(mainly along B)

NAV gyroscopic motion
o Slab geometry

@ Sheared magnetic field

@ Electrostatic, collisionless instabilities
>

Adiabatic electrons

@ Numerics:
@ Runge-Kutta of fourth order time integrator
@« Intra-node multi-threading with OpenMP or OpenACC
@ Inter-node MPI communication with domain decomposition and cloning
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@ Strong anisotropy of turbulence along/across field lines:

[Fasoli, 2016]
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CPH

Vlasov-Maxwell system of equations
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@ Distribution function:

f:fO(va//7ﬂ)+5f(va//7ﬂvt) %U// 2
m'UJ_

v — R = 5B

@ Vlasov:

G L dOf __dR 0f _dvof

dt dt dt “OR ~ dt dv,
@ Equations of motion:

B b+ L bavBe

dt N, B*

parallel motion

B* b A V{(¢)

V B drift EAB drift

dv// e
e/ AL N v

7 = (¢)

dp

= _p

dt

@ Quasi-neutrality equation:

noe(d) o) d3X+/ —noVig-Vin d*x = /5f 3x dPv
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@ Marker discretization:

NP
of(R,vy,p,t) = Z 27TmBZ p(t)(s(R - Rp(t))(s(v// - v//p(t))é(u - Np)

@ B-spline field representation (PIC method):

Ng+p Ny N,

:7} Y, 2 Z¢zgkA A (y)Ak(z)

i=1 j=1k=1
@ Fourier mode field representation (PIF method):

Ng+p Nmax —ng;+Am

9@y, 2 Z Z Z Gimn i ()2 v/ Ly+nz/Lz)

i=1 N=Nmin m=—ng;—Am
@ Field aligned & k) ~0 < m+ng(z)~0
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Guiding center data

Larmor ring data : Field data

build Larmor

get fields
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@ Single lon-Temperature-Gradient (ITG) mode (m, n) = (—49, 35)
(physical parameters from [Gérler, 2016])
@ Convergence with number of finite elements versus PIF:
102 —— e -
g . + PIC linear
L +. i 4+ PIC quadratic
0 o, 1| + PIC cubic
T3 § oy, stope =-2.1 | | = PIF linear
T 100 + oy -| | — PIF quadratic
| E % '+..|.,+ 1 | == PIF cubic
- 10-1k + %, slope =-42 i
o = * 5 B
= - * + ]
T Y VL AL i
- +‘l‘ ’~+ E
B + + ]
1073 —t— e

10° 10t

number of finite elements per wavelength

=
o
D)

@ The saturation level depends on the other parameters.
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@ Single lon-Temperature-Gradient (ITG) mode (m, n) = (—49, 35)
(physical parameters from [Gérler, 2016])
@ Convergence with number of finite elements versus PIF:
102 ——
g . 4+ PIC linear
N + g + PIC quadratic
E s + PIC cubic
10 +* - C cub
T3 § + +1'- 1| o PIF linear
g 100 ey 4 | o PIF quadratic
| E + + 4 + 1| © PIF cubic
T 10l e §
(Y s + =
@ N t + |
1072 + =
I +.'_ E
B - ]
1073 0 010 + \H + | L1l
102 107! 10°

wall clock time per time step using 2 NVIDIA Tesla P100 (in s)
@ The saturation level depends on the other parameters.
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o inroducion Sy 2 o WETTTI 51 inear SEEITTTIPY « 7-rcrmance I 5 Conclion 3

lon temperature
—— Logarithmic gradient

@ |ITG non-linear simulation

radial direction
@ Full Fourier spectrum (15 toroidal modes times 11 poloidal modes)
@ PIC method:

Heat flux Zonal flow shearing rate
< c
) o
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@ PIC method:
Heat flux Zonal flow shearing rate
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@ PIF method:
Heat flux Zonal flow shearing rate
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Energy conservation
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@ Check energy conservation over time:

- - = PIC: Epot
- - - PIC: Eyin
- == PIC: Epot-+Ein
—— PIF: Epot
— PIF: By,
—— PIF: Epot+Ekin

energy

time

@ Error with PIF method always lower than with PIC
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@ PIC, 32 nodes, 128M particles, 128 x 512 x 128 grid cells

Splines Sorting

quadratic no I Build Larmor points

QE: [ Gyroaveraging
§_ quadratic yes I Charge deposition
(o] . [ Field evaluation
E cubic no I Sorting
= cubic yes P.USh

[ Field solver

[ Parallel move
[ Diagnostics
[__1MPI synchronization

quadratic no

quadratic yes

cubic no
* Intel Xeon E5-2690
cubic  ves (X0 sof Y] [] 1.45 ** NVIDIA Tesla P100

MPI14+OpenACC,
1 GPU** per node || 12 threads* per node

Wall clock time per timestep (s)

@ Sorting interesting for cubic splines, not for quadratic
@ GPU** up to 3.5 times faster than CPU*
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ECOLE POLYTECHNIQUE
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@ PIF, 32 nodes, 128M particles, 128 radial cells, N, = 11

0 5 10 15 20 25 30
Wall clock time per timestep (s)

@ Wall clock time roughly proportional to N,
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I Build Larmor points
[ Gyroaveraging
I Charge deposition
[ Field evaluation
I Push

[ Field solver

[ Parallel move

[ Diagnostics

[__1 MPI synchronization
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@ PIF, 32 nodes, 128M particles, 128 radial cells, N, = 15

I Build Larmor points
[ Gyroaveraging
I Charge deposition
[ Field evaluation
I Push

[ Field solver

[ Parallel move

[ Diagnostics

[ MPI synchronization

11.4

0 2 4 6 8 10 12
Wall clock time per timestep (s)

@ Wall clock time scales less than linearly with N, because exponential is
computed with prefactor successive multiplications.
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@ Physics-based weak scaling, PIC, quad. splines, 12 OpenMP threads per node

scale nodes part field
Moo | 8 32M  64x256x128 I Build Larmor points
= .
‘B |Cyclone 32 128M 128x512x128 B Gyroaveraging
) I Charge deposition
£ TCV 128 512M 256x1024x128 B Field evaluation
£| ITER 512 2G  512x2048x128 I Sorting
= IDEMO 2048 8G 102800628 6.80 | HEE Push
[ Field solver
8 32M  64x256x128
™ — P?rallel n:\ove
£ |Cyclone 32 128M 1285124128 . [ ]]350 I Diagnostics
8| TCv 128 512M 256x1024x128 [ MPI synchronization
ey
§ ITER 512 2G  512048x128
- 6.21

DEMO 2048 8G  1024x4096x128

Wall clock time per timestep (s)

@ Sorting useful for large size systems
@ Number of particle per cell decreases, could be avoided with 2D domain
decomposition (see A. Jocksch's presentation)
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@ Physics-based weak scaling, PIF, quadratic splines, 1 GPU per node

scale nodes part field

I Build Larmor points
I Gyroaveraging
Il Charge deposition
[ Field evaluation
I Push

[ Field solver

[ Parallel move

I Diagnostics

[ MPI synchronization

8 32M 64x11x15

Cyclone 32 128M 128x11x15

TCV 128 512M 256x11x15

ITER 512 2G 512x11x15

DEMO 2048 8G 1024x11x15 5 9.27

0 2 4 6 8 10
Wall clock time per timestep (s)

@ Number of particles per mode increases = atomic conflicts
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@ What to take home:

« Spline order: choice for best time-to-solution depends on required
precision.

@ PIC or PIF: PIF is more precise than PIC, but can be slower if many
Fourier modes are kept.

@ CPU or GPU: GPU is about 3 times faster than CPU for PIC (on Piz
Daint), and essential for PIF.

& Future work:

@ Apply those results to application runs with ORB5 (see A. Scheinberg's
poster and E. Lanti's presentation)
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Power balance

[1-Backup sides >>11 Physics > ST

1 dgp‘)t — _dgkin
@ Balance equation =32 = —“=dn

o Potential energy ot = [ %e(qﬁ)f d3>x d*v

o Kinetic energy Exin = [ (%mv?/ + ,uB)f d3x d3v

@ Linear growth rate

@ Ypot = %% computed by finite difference in time

_ _—1 dé&n . .
@ Ykin = 35 s computed instantaneously at each timestep
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Algorithm 2 Prefactor method
eiz = exp(2miz/L,)
Algorithm 1 Explicit method einz = eiz” Nmin
for n € [Nmin, Nmax] do for n € [Nmin, Nmax] do
einz = exp(2rwinz/L;) eily = exp(2miy/L,)
for m € [-ng— Am, —nqg+ Am| do eimy = eiy*(—ng — Am)
eimy = exp(2wimy/L,) for m € [-ng— Am, —ng+ Am] do
.. = ..X eimy X einz ... =...X eimy X einz
end for eimy = eimy X eiy
end for end for
einz = einz X eiz
end for
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