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Sparse Matrix-Matrix Multiplication (SpGEMM)

* Applications in a wide range of domains, such as
* Finite element simulations based on domain
decomposition
e Computational fluid dynamics
* Climate simulation
*Big Data

_ Application field of
e Electronic structure @l
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Distributed SpGEMM challenges

* Parallel So GEMM is an irregular computation (load

balance) whose performance is communication bound
1. Improve performance if there is a priori knowledge
about the input or output matrices sparsity structure
2. Inthe general case a priori knowledge of the input and
output matrix sparsity is unknown

Case study of this
presentation
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Application Field: Electronic Structure

e Simulation of nanoparticles, electronic devices, macromolecules, disordered
systems, a small virus

e Simulation based on Density Functional Theory (DFT)

Aggregated nanoparticles in explicit
solution (77,538 atoms). Relevant for 3
generation solar cells.

Run in 2014 with CP2K on the CSCS Piz
Daint supercomputer (Cray XC30, 5272
hybrid compute nodes, 7.8PF) at approx.
122s per step (requires thousands steps)
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Linear-Scaling DFT and SpGEMM (1)

 Evaluate the density matrix P from its functional definition
1
P = > (I — sign(S™1H — ,uI))S_1

where H is Kohn-Sham matrix, S is the overlap matrix, I is the
identity matrix, and u is the chemical potential

* The matrices are sparse with a priori unknown sparsity patterns
* Non-zero elements are small dense blocks, e.g. 13 x 13 oy
* Typical occupancies >10% (up to nearly dense)
* On-the-fly filtering procedure during the product

of two dense blocks
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Linear-Scaling DFT and SpGEMM (2)

* The matrix sign function is defined as
sign(4) = A(4%)~1/2
 Compute with a simple iterative scheme

Xo =1A IAITE
Xnt+1 = EXn(BI - X7)
Xo = sign(4)

=» Requires SpGEMM (two multiplications per iteration)

* S GEMM accounts for >80% of the total runtime of the
simulations

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)



The DBCSR library

e Standalone library implemented in Fortran
(https://dbcsr.cp2k.org)

* Distributed Block Compressed Sparse Row

Address the following requirements:

@Take full advantage of the block-structured sparse nature of
the matrices, including on-the-fly filtering

@The dense limit as important as the sparse limit
© Provide good scalability for a large number of processors
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https://dbcsr.cp2k.org/

Distribution and Decomposition

1. Independent permutation of row and column block indices to achieve a good load
balance

e Each processor holding approximately the same amount of data, with roughly the same amount of
Flops

 Static decomposition for all multiplications

2. 2D grid decomposition over P processors

=» Use optimized dense matrix-matrix multiplication algorithm
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DBCSR’s multiplication scheme

MPI parallelization
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e Libsmm and Libcusmm are part of the library

* Libxsmm developed by Intel (https://github.com/hfp/libxsmm)
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Cannon’s Algorithm C += A B

* Data is decomposed such that C is always local, i.e. it does not require
communications

* Generalize to an arbitrary 2D processor grid P = Py + P,

* Introducing a virtual topology
* E.g.2 x4 processors

* V =Ilcm(Pg, P;)
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Cannon’s Algorithm C += A B (2)

|/ steps for each multiplication (ticks)
* Minimal when P, = P (square topology) or at least when they have most of their
factors in common
e I/ scales as 0(@)

* Per each tick
1. Data transfer for A and B between grid processors neighbors
2. Local multiplication and accumulation
=» Communication and computation overlap Ib

* The volume of communicated data by each processor scales as 0(1/\/?) A

* Two buffers per each processor for matrices A and B used for
communication and computation |‘
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Overview
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2.5D Algorithm

* Decompose data in 2D processor grid P = Pp + P,

e Same as existing DBCSR algorithm
—

P

—. . L

3 VLN

e 1 < L < /P isthe number of layers (L = 1 is the 2D algorithm)

* Each processor evaluates L local C parts

e Communicate 4 and B and reuse them for local C evaluations,
i.e. less communications

* Computation runsin a 3D grid

~ | |

E. Solomonik and J. Demmel. 2011. Communication-optimal parallel 2.5D matrix multiplication and LU factorization algorithms.
In European Conference on Parallel Processing. Springer, 90-109.
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2.5D Algorithm Example

 Computation on a 2 x 4 processors grid
* Use virtual topology A(2 X 4) and B(4 X 4)

* 4 ticks
e [ = 2,i.e.2x2x2 computational grid
I S 2 _ _

S, PP .
1| 1 Cyit=A11Bys 1. Cy3+=A;3B3;

B A - Cyt=hs By, Reuse 4
1|3 C1+=Ag,B5, 3. Cpat=A; 4B, 5
1| 4 Ci3t=A;,B,3 4. Cqt=Ag 4By,
|
| ] " 6 A and B communications
: Exchange C: 1 communication )

2 per processor (8 in the 2D
| per processor :
! algorithm)
|
|
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2.5D Algorithm Requirements

* Virtual topology case
 mx = max(Pg, P-) and mn = min(Pg, Pc), mx multiple integer of mn and
mx < mn?
=> Layers along the largest grid dimension

 Examples with L = 2
9 9x2
) 10x5=>»5x5x2

e Square topology
* L square number and Py integer multiple of VL
=> Layers along the both grid dimensions

e Examples with L = 4
9 9x9
©10x10=>5x5x4

=» By construction P/L is a square number
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2.5D Algorithm Considerations (1)

* Requires O(L) more memory per processor with respect previous DBCSR

algorithm
* L buffers to store partial C (it was 1) A

» max(2,vL) + 2 buffers to communicate/cache A and B (it was 4)

* The volume of communicated data for A and B scales as 0(1/\/PL), i.e.
reduced by a factor VL

1

= Trading memory for communications, i.e. reduce the
volume of exchanged data by locally caching matrices
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2.5D Algorithm Considerations (2)

* . — 1 communications of partial C per each processor to get
everything in the right processor A

* Total amount of data to communicate (Sy is the size of the

matrix X)

.
—(Sa +SB) +(L—-1)S¢

VI V

N —

~~ C panels
A, B panels

A* For the sparse case S; > S, g, therefore the C data
exchange can be dominant for large L A
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Overview

a One-sided MPIl implementation
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One-Sided MPI Implementation

* Initial local data for matrices A and B organized in memory

pools
* Reused between multiplications
* Reallocation only if the required size is larger than actual size

* Create MPl Windows attached to the memory pools
* Avoid unnecessary creation/free of the windows when there is
no reallocation of the memory pools
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Previous VS New DBCSR

MPI Implementation

* Previous: implementation for the Cannon’s algorithm based on
Point-to-Point communications (mpi isend/mpi irecv)
* New: use RMA passive target to access the data in the initial
position (mpi rget)
e Read-only data, no neighbor communications
* One more buffer per A and B to store the initial data
* New implementation requires less synchronization during the

multiplications
e Just check the communication request on the receiver

* Overall the new implementation is more flexible
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Benchmarks

e 3 real benchmarks taken from the CP2K simulation framework
(http://www.cp2k.org)

cpgk

Average Occupancy (%) 0.06
Block size 23 x 23 6 X6 32x32
# Multiplications 193 1198 10

* Test on Piz Daint @ CSCS (CRAY XC30, Sandy Bridge + NVIDIA K20x)

* Single rank per node and 8 OpenMP threads + GPU
 CRAY MPI + DMAPP for fast RMA communicatons
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Strong scaling results

* PTP = Point-to-Point, i.e. previous DBCSR implementation
* OSL = One-sided with L layers, i.e. new DBCSR implementation

s o H20-DFT-LS SE Dense
NOGeS 5P 0S1 052 0S4 0S9 | PTP _OS1__ 052 0S4 089 | PTP_0S1__ OS2 084 089
200 | 325 298 260 - - | 558 500 459 - - | 428 430 439 - -
DBCSR 400 | 212 184 - 148 - |39 310 - 310 - |221 219 - 236 -
execution time 729 | 155 137 - - 117 | 310 246 - - 314 | 133 133 - - 155
(seconds) 1296 | 136 120 - 8 92 | 282 205 - 199 254 | 112 109 - 105 116
2704 | 99 8 - 55 - | 249 178 - 172 - | 108 100 - 97 -
00 Solid bars: PTP/OS1
180 Shaded bars: PTP/min(OSL)

1.60

In average:
* H20O-DFT-LS: OSL (L > 1) fastest

1.40

E‘. 122 Eﬁé I I e S-E: OS1 fastest
0.80 AN BER RER RER RR * Dense: no significant speedup
 MAN NN NEN NEN HR
200 400 729 1296 2704 As expected speedups improve with

#nodes higher number of nodes

= H20-DFT-LS = S-E = Dense
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Strong scaling results considerations

* Correlate speedups with message size of A and B communications and
computation (PTP, OS1)

— 100  H20-DFT-LS:

E 90 =» Communication @ VS Computation @

5 80 = Communication limited

% ;g | =>» Improve performance with OSL (L > 1)

E 50 - * S-E:

% 40 - =» Communication @ VS Computation @

: 0 =>» OS performs very well with small messages

20 -

10 - =» No communication limited already with OS1

o 200 400 729 1296 2704 ’ Dense:
# nodes = Communication @ VS Computation ®
M H20-DFT-LS MS-E M Dense = No communication limited

 Memory footprint under control (<8GB per processor)
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Conclusion and Outlook

* Introducing the 2.5D multiplication algorithm in DBCSR for sparse matrix-
matrix multiplications improves the performance with respect to previous

DBCSR implementation by reducing the volume of exchanged data
* The speedup becomes larger when we use more processors, up to 1.8x
* One-sided MPI communications gives better performance and it is also more flexible
than Point-to-point communications

* The project will be further extended under a new PASC project (2017-2020)
e Tensor algebra, more details at the tomorrow POSTER session
* We are looking for a postdoc, if you are interested (or you know a possible candidate)
please talk to me or my colleagues
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