

Increasing the Efficiency of Sparse Matrix-Matrix Multiplication with a 2.5D Algorithm and One-Sided MPI

Alfio Lazzaro¹, Joost VandeVondele², Jürg Hutter¹, Ole Schütt³
¹ University of Zürich, ² CSCS, ³ EMPA

Increasing the Efficiency of Sparse Matrix-Matrix Multiplication with a 2.5D Algorithm and One-Sided MPI

Overview

Increasing the Efficiency Multiplication

Sparse Matrix-Matrix 2.5D Algorithm

One-Sided MPI

Overview

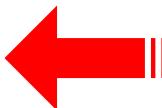
- ❑ **Sparse Matrix-Matrix Multiplication**
 - ❑ Focus on Linear Scaling Density Functional Theory
 - ❑ Introducing **Distributed Block Compressed Sparse Row (DBCSR) library**
- ❑ **New 2.5D Algorithm**
 - ❑ Comparison with previous DBCSR Cannon's algorithm
- ❑ **One-sided MPI implementation**
- ❑ **Performance**
- ❑ **Conclusion and outlook**

Overview

- **Sparse Matrix-Matrix Multiplication**
 - Focus on Linear Scaling Density Functional Theory
 - Introducing **Distributed Block Compressed Sparse Row (DBCSR) library**
- **New 2.5D Algorithm**
 - Comparison with previous DBCSR Cannon's algorithm
- **One-sided MPI implementation**
- **Performance**
- **Conclusion and outlook**

Sparse Matrix-Matrix Multiplication (SpGEMM)

- Applications in a wide range of domains, such as
 - Finite element simulations based on domain decomposition
 - Computational fluid dynamics
 - Climate simulation
 - Big Data
 - Electronic structure



Application field of
this presentation

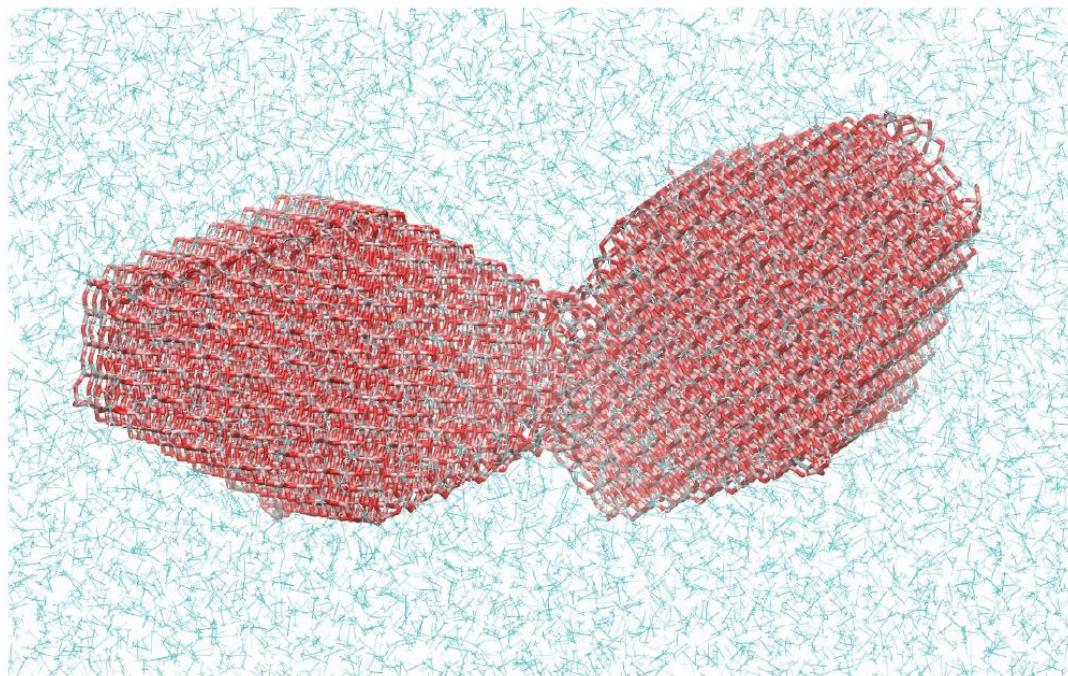
Distributed SpGEMM challenges

- Parallel SpGEMM is an irregular computation (**load balance**) whose performance is **communication bound**
 1. Improve performance if there is *a priori knowledge* about the input or output matrices sparsity structure
 2. In the *general case* a priori knowledge of the input and output matrix sparsity is unknown

Case study of this presentation

Application Field: Electronic Structure

- Simulation of nanoparticles, electronic devices, macromolecules, disordered systems, a small virus
- Simulation based on Density Functional Theory (DFT)



Aggregated nanoparticles in explicit solution (77,538 atoms). Relevant for 3rd generation solar cells.
Run in 2014 with **CP2K** on the CSCS Piz Daint supercomputer (Cray XC30, **5272 hybrid compute nodes, 7.8PF**) at approx. **122s per step (requires thousands steps)**

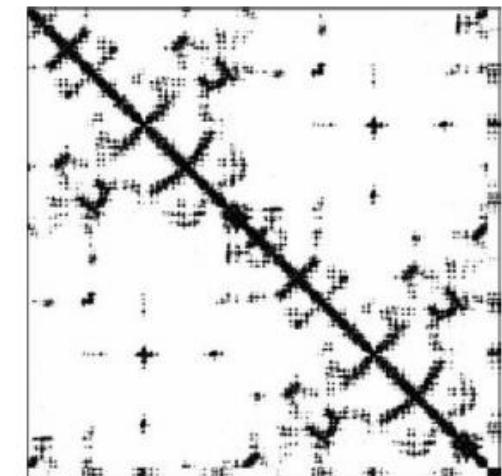
Linear-Scaling DFT and SpGEMM (1)

- Evaluate the **density matrix P** from its functional definition

$$P = \frac{1}{2} (I - \text{sign}(S^{-1}H - \mu I))S^{-1}$$

where H is Kohn-Sham matrix, S is the overlap matrix, I is the identity matrix, and μ is the chemical potential

- The **matrices are sparse** with a priori unknown sparsity patterns
- **Non-zero elements are small dense blocks**, e.g. 13×13
- Typical occupancies $>10\%$ (up to nearly dense)
- **On-the-fly filtering procedure** during the product of two dense blocks



Linear-Scaling DFT and SpGEMM (2)

- The **matrix sign function** is defined as

$$\text{sign}(A) = A(A^2)^{-1/2}$$

- Compute with a simple iterative scheme

$$X_0 = A \cdot \|A\|^{-1}$$

$$X_{n+1} = \frac{1}{2} X_n (3I - X_n^2)$$

$$X_\infty = \text{sign}(A)$$

→ **Requires SpGEMM** (two multiplications per iteration)

- SpGEMM accounts for **>80%** of the total runtime of the simulations

The DBCSR library

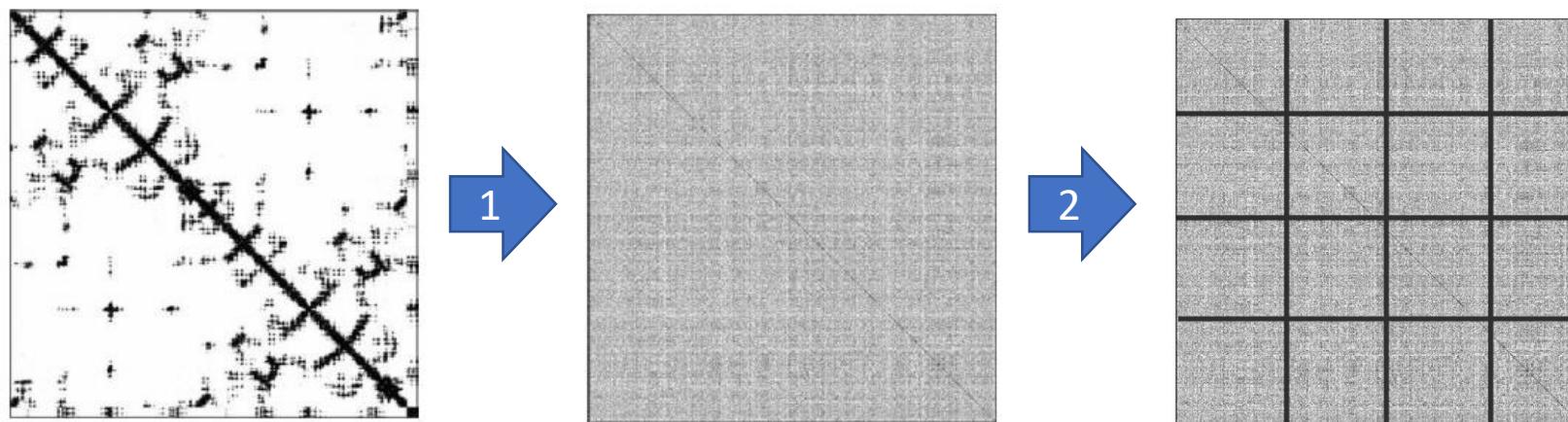
- Standalone library implemented in Fortran
(<https://dbcsr.cp2k.org>)
 - **Distributed Block Compressed Sparse Row**

Address the following requirements:

- ① Take full advantage of the block-structured sparse nature of the matrices, including on-the-fly filtering
- ② The dense limit as important as the sparse limit
- ③ Provide good scalability for a large number of processors

Distribution and Decomposition

1. Independent permutation of row and column block indices to achieve a good load balance
 - Each processor holding approximately the same amount of data, with roughly the same amount of Flops
 - Static decomposition for all multiplications
2. 2D grid decomposition over P processors



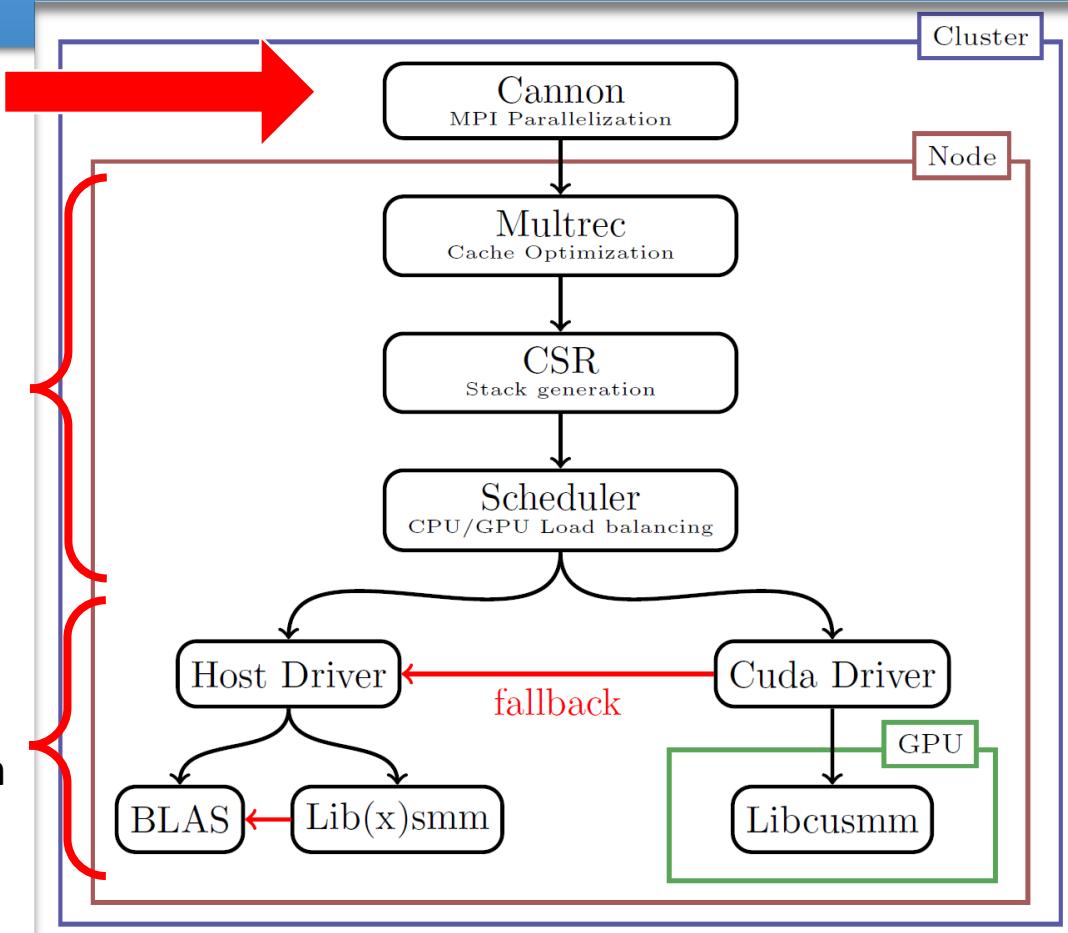
→ Use optimized dense matrix-matrix multiplication algorithm

DBCSR's multiplication scheme

**MPI parallelization
(focus of this presentation)**

Multiplications of blocks are organized in stacks

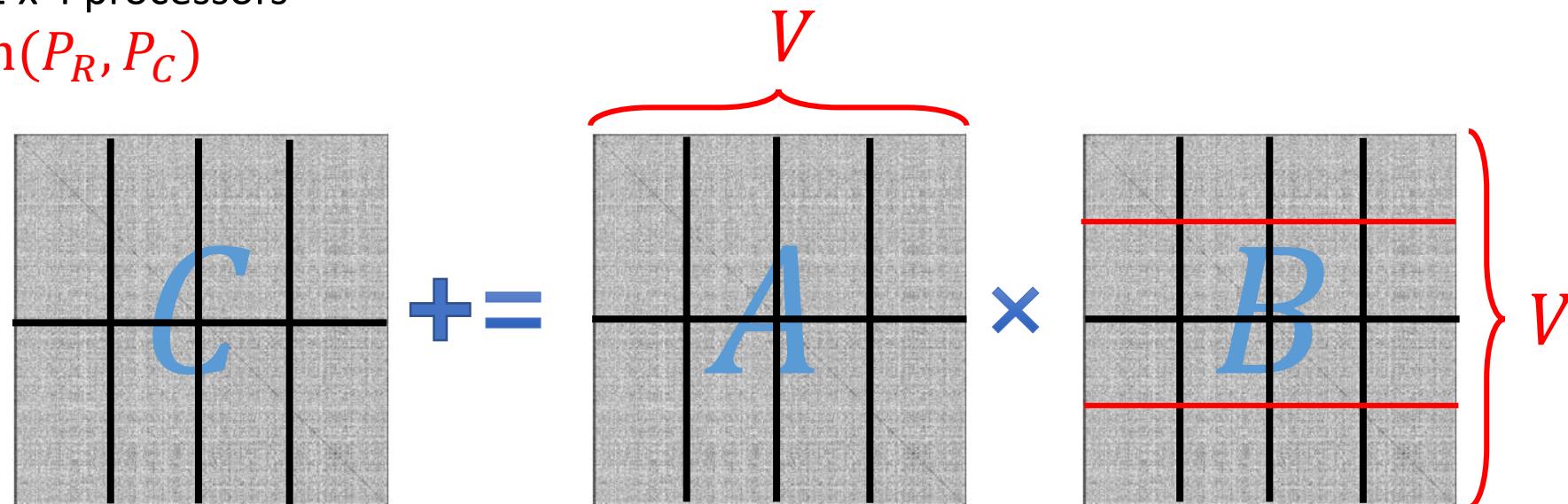
OpenMP parallelization



- Libsmm and Libcusmm are part of the library
- Libxsmm developed by Intel (<https://github.com/hfp/libxsmm>)

Cannon's Algorithm $C += A B$ (1)

- Data is decomposed such that C is always local, i.e. it does not require communications
- Generalize to an arbitrary 2D processor grid $P = P_R \cdot P_C$
 - Introducing a **virtual topology**
 - E.g. 2×4 processors
 - $V = \text{lcm}(P_R, P_C)$



L. E. Cannon. 1969. *A cellular computer to implement the Kalman Filter Algorithm*. Ph.D. Dissertation. Montana State University

Cannon's Algorithm $C += A \cdot B$ (2)

- V steps for each multiplication (ticks)
 - Minimal when $P_R = P_C$ (square topology) or at least when they have most of their factors in common
 - V scales as $O(\sqrt{P})$
 - Per each tick
 1. Data transfer for A and B between *grid processors* neighbors
 2. Local multiplication and accumulation

→ Communication and computation overlap
 - The volume of communicated data by each processor scales as $O(1/\sqrt{P})$
 - Two buffers per each processor for matrices A and B used for communication and computation

Overview

- Sparse Matrix-Matrix Multiplication
 - Focus on Linear Scaling Density Functional Theory
 - Introducing Distributed Block Compressed Sparse Row (DBCSR) library
- **New 2.5D Algorithm**
 - Comparison with DBCSR Cannon's algorithm
- One-sided MPI implementation
- Performance
- Conclusion and outlook

2.5D Algorithm

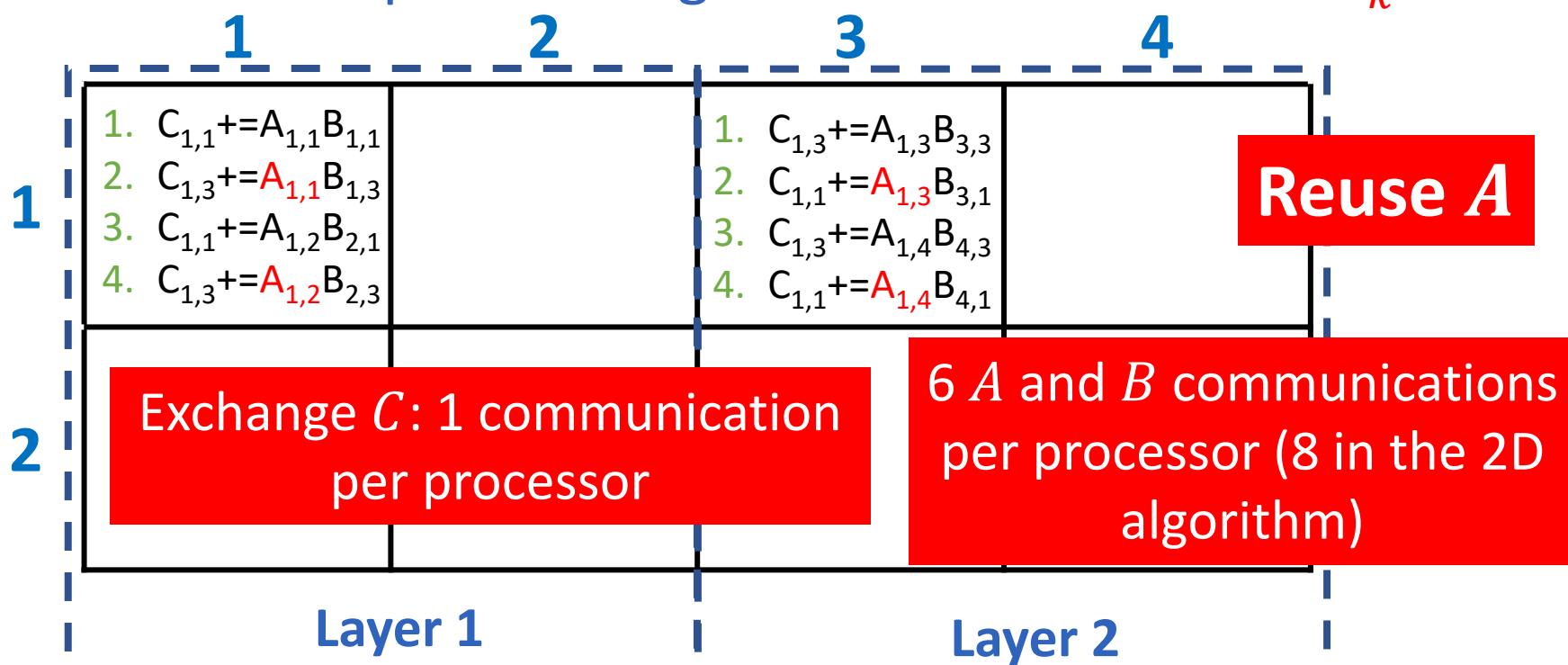
- Decompose **data** in 2D processor grid $P = P_R \cdot P_C$
 - Same as existing DBCSR algorithm
- Computation runs in a 3D grid $\sqrt{\frac{P}{L}} \cdot \sqrt{\frac{P}{L}} \cdot L$
 - $1 \leq L \leq \sqrt[3]{P}$ is the number of layers ($L = 1$ is the 2D algorithm)
 - Each processor evaluates L local C parts
 - Communicate A and B and reuse them for local C evaluations, i.e. less communications

E. Solomonik and J. Demmel. 2011. *Communication-optimal parallel 2.5D matrix multiplication and LU factorization algorithms*. In European Conference on Parallel Processing. Springer, 90–109.

2.5D Algorithm Example

- Computation on a 2×4 processors grid
 - Use virtual topology $A(2 \times 4)$ and $B(4 \times 4)$
 - 4 ticks
- $L = 2$, i.e. $2 \times 2 \times 2$ computational grid

$$C_{i,j} = \sum_k A_{i,k} B_{k,j}$$



2.5D Algorithm Requirements

- Virtual topology case

- $mx = \max(P_R, P_C)$ and $mn = \min(P_R, P_C)$, mx multiple integer of mn and $mx \leq mn^2$

→ Layers along the **largest** grid dimension

- Examples with $L = 2$

:(9 x 2

:) 10 x 5 → 5 x 5 x 2

- Square topology

- L square number and P_R integer multiple of \sqrt{L}

→ Layers along the **both** grid dimensions

- Examples with $L = 4$

:(9 x 9

:) 10 x 10 → 5 x 5 x 4

→ By construction P/L is a square number

2.5D Algorithm Considerations (1)

- Requires $O(L)$ more memory per processor with respect previous DBCSR algorithm

- L buffers to store partial C (it was 1)
 - $\max(2, \sqrt{L}) + 2$ buffers to communicate/cache A and B (it was 4)

- The volume of communicated data for A and B scales as $O(1/\sqrt{PL})$, i.e. reduced by a factor \sqrt{L}

→ Trading memory for communications, i.e. reduce the volume of exchanged data by locally caching matrices

2.5D Algorithm Considerations (2)

- $L - 1$ communications of partial C per each processor to get everything in the right processor

- Total amount of data to communicate (S_X is the size of the matrix X)

$$\underbrace{\frac{V}{\sqrt{L}}(S_A + S_B)}_{A, B \text{ panels}} + \underbrace{(L - 1)S_C}_{C \text{ panels}}$$

- For the sparse case $S_C > S_{A,B}$, therefore the C data exchange can be dominant for large L

Overview

- ❑ Sparse Matrix-Matrix Multiplication
 - ❑ Focus on Linear Scaling Density Functional Theory
 - ❑ Introducing Distributed Block Compressed Sparse Row (DBCSR) library
- ❑ New 2.5D Algorithm
 - ❑ Comparison with DBCSR Cannon's algorithm
- ❑ One-sided MPI implementation
- ❑ Performance
- ❑ Conclusion and outlook

One-Sided MPI Implementation

- Initial local data for matrices A and B organized in memory pools
 - Reused between multiplications
 - **Reallocation** only if the required size is larger than actual size
- Create **MPI Windows** attached to the memory pools
 - Avoid unnecessary creation/free of the windows when there is no reallocation of the memory pools

Previous VS New DBCSR MPI Implementation

- **Previous:** implementation for the Cannon's algorithm based on Point-to-Point communications (`mpi_isend`/`mpi_irecv`)
- **New:** use **RMA passive target** to access the data in the initial position (`mpi_rget`)
 - Read-only data, no neighbor communications
 - One more buffer per A and B to store the initial data
- New implementation requires **less synchronization** during the multiplications
 - Just check the communication request on the receiver
- Overall the new implementation is more flexible

Overview

- ❑ Sparse Matrix-Matrix Multiplication
 - ❑ Focus on Linear Scaling Density Functional Theory
 - ❑ Introducing Distributed Block Compressed Sparse Row (DBCSR) library
- ❑ New 2.5D Algorithm
 - ❑ Comparison with DBCSR Cannon's algorithm
- ❑ One-sided MPI implementation
- ❑ **Performance**
- ❑ Conclusion and outlook

Benchmarks

- 3 *real* benchmarks taken from the CP2K simulation framework (<http://www.cp2k.org>)



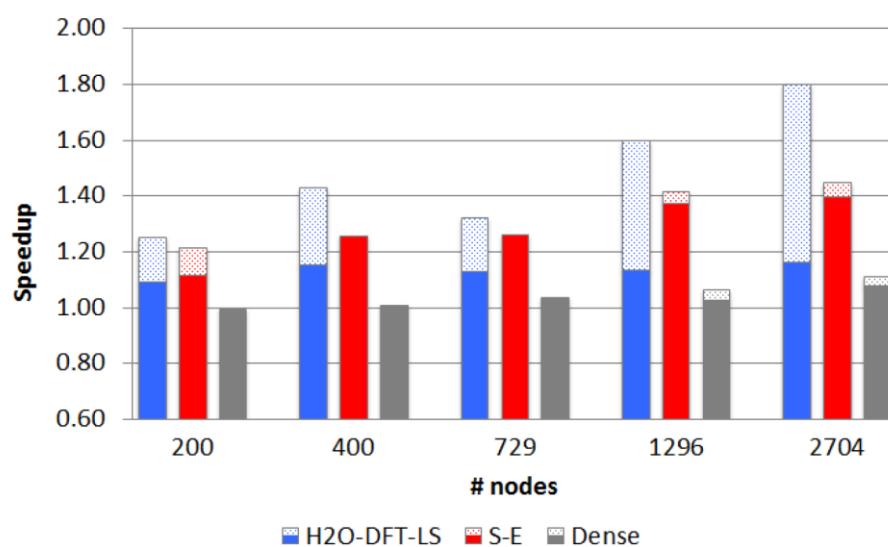
	H2O-DFT-LS	S-E	DENSE
Average Occupancy (%)	10	0.06	100
Block size	23 x 23	6 x 6	32 x 32
# Multiplications	193	1198	10

- Test on Piz Daint @ CSCS (CRAY XC30, Sandy Bridge + NVIDIA K20x)
 - Single rank per node and 8 OpenMP threads + GPU
 - CRAY MPI + **DMAPP** for fast RMA communications

Strong scaling results

- PTP = Point-to-Point, i.e. previous DBCSR implementation
- OSL = One-sided with L layers, i.e. new DBCSR implementation

	# nodes	H2O-DFT-LS					S-E					Dense				
		PTP	OS1	OS2	OS4	OS9	PTP	OS1	OS2	OS4	OS9	PTP	OS1	OS2	OS4	OS9
DBCSR execution time (seconds)	200	325	298	260	—	—	558	500	459	—	—	42.8	43.0	43.9	—	—
	400	212	184	—	148	—	390	310	—	310	—	22.1	21.9	—	23.6	—
	729	155	137	—	—	117	310	246	—	—	314	13.3	13.3	—	—	15.5
	1296	136	120	—	85	92	282	205	—	199	254	11.2	10.9	—	10.5	11.6
	2704	99	85	—	55	—	249	178	—	172	—	10.8	10.0	—	9.7	—



Solid bars: PTP/OS1

Shaded bars: PTP/min(OSL)

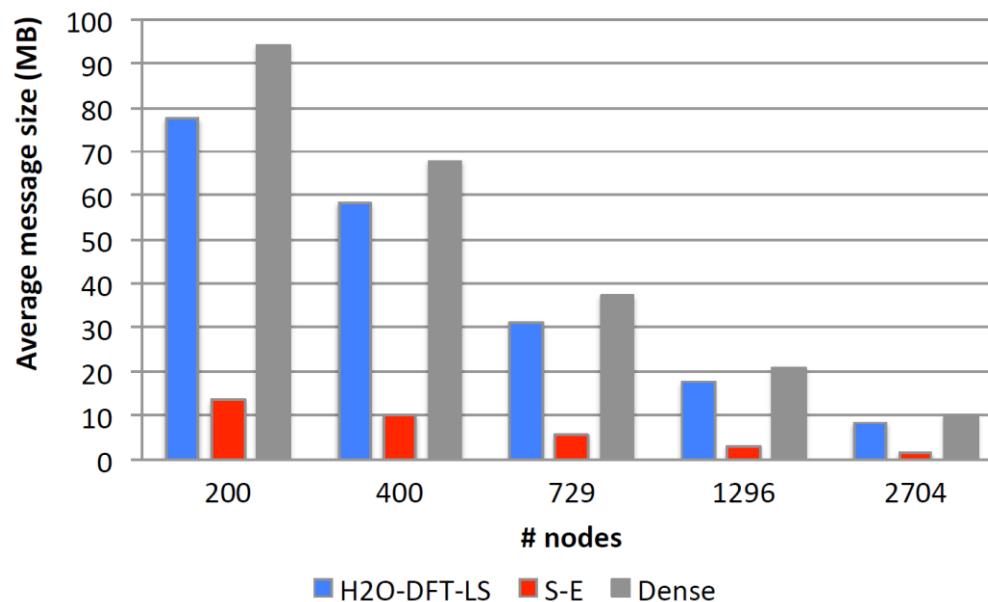
In average:

- H2O-DFT-LS: OSL ($L > 1$) fastest
- S-E: OS1 fastest
- Dense: no significant speedup

As expected speedups improve with higher number of nodes

Strong scaling results considerations

- Correlate speedups with message size of A and B **communications** and **computation** (PTP, OS1)



- Memory footprint under control (<8GB per processor)

- H2O-DFT-LS:
 - Communication 😕 **VS** Computation 😊
 - Communication limited
 - Improve performance with OSL ($L > 1$)
- S-E:
 - Communication 😊 **VS** Computation 😊
 - OS performs very well with small messages
 - No communication limited already with OS1
- Dense:
 - Communication 😕 **VS** Computation 😕
 - No communication limited

Overview

- Sparse Matrix-Matrix Multiplication
 - Focus on Linear Scaling Density Functional Theory
 - Introducing Distributed Block Compressed Sparse Row (DBCSR) library
- New 2.5D Algorithm
 - Comparison with DBCSR Cannon's algorithm
- One-sided MPI implementation
- Performance
- Conclusion and outlook

Conclusion and Outlook

- Introducing the **2.5D multiplication algorithm** in DBCSR for sparse matrix-matrix multiplications improves the performance with respect to previous DBCSR implementation by reducing the volume of exchanged data
 - The speedup becomes larger when we use more processors, up to 1.8x
 - **One-sided MPI communications** gives better performance and it is also more flexible than Point-to-point communications
- The project will be further extended under a new PASC project (2017-2020)
 - Tensor algebra, more details at the tomorrow POSTER session
 - We are looking for a postdoc, if you are interested (or you know a possible candidate) please talk to me or my colleagues

References

- Urban Borštnik *et al.*, *Sparse matrix multiplication: The distributed block-compressed sparse row library*, Parallel Computing, 2014, Volume 40, Issues 5–6, pp 47–58
- Ole Schütt *et al.*, *GPU Accelerated Sparse Matrix Matrix Multiplication for Linear Scaling Density Functional Theory*, chapter in “Electronic Structure Calculations on Graphics Processing Units”, John Wiley and Sons, ISBN 9781118661789
- Proceeding of this conference
- <http://dbcsrcp2k.org>
- <http://cp2k.org>

Thanks!
Questions?

Thanks to CSCS for providing access to Piz Daint, and
the PASC project for funding the activity