Increasing the Efficiency of Sparse Matrix-Matrix
Multiplication with a 2.5D Algorithm and
One-Sided MPI

Alfio Lazzaro?!, Joost VandeVondele?, Jiirg Hutter?, Ole Schiitt?
1 University of Ziirich, 2CSCS, 3 EMPA

! 71 PASC 2017, Lugano (CH)
June 26th, 2017

IIIIIIIIIII

Overview

Increasing the Efficiency of Sparse Matrix-Matrix
Multiplication with a 2.5D Algorithm and
One-Sided MP]

Overview

Increasing the Efficiency Sparse Matrix-Matrix
Multiplication 2.5D Algorithm
One-Sided MPI

Overview

aSparse Matrix-Matrix Multiplication

aFocus on Linear Scaling Density Functional Theory
alIntroducing Distributed Block Compressed Sparse Row (DBCSR) library

aNew 2.5D Algorithm

o Comparison with previous DBCSR Cannon’s algorithm
0 One-sided MPI implementation

a Performance
0 Conclusion and outlook

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Overview

aSparse Matrix-Matrix Multiplication

aFocus on Linear Scaling Density Functional Theory
alIntroducing Distributed Block Compressed Sparse Row (DBCSR) library

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Sparse Matrix-Matrix Multiplication (SpGEMM)

* Applications in a wide range of domains, such as
* Finite element simulations based on domain
decomposition
e Computational fluid dynamics
* Climate simulation
*Big Data

_ Application field of
e Electronic structure @l

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Distributed SpGEMM challenges

* Parallel So GEMM is an irregular computation (load

balance) whose performance is communication bound
1. Improve performance if there is a priori knowledge
about the input or output matrices sparsity structure
2. Inthe general case a priori knowledge of the input and
output matrix sparsity is unknown

Case study of this
presentation

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Application Field: Electronic Structure

e Simulation of nanoparticles, electronic devices, macromolecules, disordered
systems, a small virus

e Simulation based on Density Functional Theory (DFT)

Aggregated nanoparticles in explicit
solution (77,538 atoms). Relevant for 3
generation solar cells.

Run in 2014 with CP2K on the CSCS Piz
Daint supercomputer (Cray XC30, 5272
hybrid compute nodes, 7.8PF) at approx.
122s per step (requires thousands steps)

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Linear-Scaling DFT and SpGEMM (1)

 Evaluate the density matrix P from its functional definition
1
P = > (I — sign(S™1H — ,uI))S_1

where H is Kohn-Sham matrix, S is the overlap matrix, I is the
identity matrix, and u is the chemical potential

* The matrices are sparse with a priori unknown sparsity patterns
* Non-zero elements are small dense blocks, e.g. 13 x 13 oy
* Typical occupancies >10% (up to nearly dense)
* On-the-fly filtering procedure during the product

of two dense blocks

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) _

Linear-Scaling DFT and SpGEMM (2)

* The matrix sign function is defined as
sign(4) = A(4%)~1/2
 Compute with a simple iterative scheme

Xo =1A IAITE
Xnt+1 = EXn(BI - X7)
Xo = sign(4)

=» Requires SpGEMM (two multiplications per iteration)

* S GEMM accounts for >80% of the total runtime of the
simulations

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

The DBCSR library

e Standalone library implemented in Fortran
(https://dbcsr.cp2k.org)

* Distributed Block Compressed Sparse Row

Address the following requirements:

@Take full advantage of the block-structured sparse nature of
the matrices, including on-the-fly filtering

@The dense limit as important as the sparse limit
© Provide good scalability for a large number of processors

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

https://dbcsr.cp2k.org/

Distribution and Decomposition

1. Independent permutation of row and column block indices to achieve a good load
balance

e Each processor holding approximately the same amount of data, with roughly the same amount of
Flops

 Static decomposition for all multiplications

2. 2D grid decomposition over P processors

=» Use optimized dense matrix-matrix multiplication algorithm

Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

DBCSR’s multiplication scheme

MPI parallelization

y

(focus of this eSO
° Node |-

presentation)) i .

Multrec
% Cache Optimization y
Multiplications of p ¥ -
) CSR
blocks are organized | Steckeencration
in stacks d
(Scheduler]
CPU/GPU Load balancing

L (.
OpenMPp (Host Driver g\ PTTER LCuda DI‘IVGI")
GPU
parallelization /\ 13
(BLAS Je—{Lib(x)smm) (Libcusmm)

e Libsmm and Libcusmm are part of the library

* Libxsmm developed by Intel (https://github.com/hfp/libxsmm)

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

https://github.com/hfp/libxsmm

Cannon’s Algorithm C += A B

* Data is decomposed such that C is always local, i.e. it does not require
communications

* Generalize to an arbitrary 2D processor grid P = Py + P,

* Introducing a virtual topology
* E.g.2 x4 processors

* V =Ilcm(Pg, P;)

Alfio Lazzaro (alfio.lazzaro@chem.uzh.

Cannon’s Algorithm C += A B (2)

|/ steps for each multiplication (ticks)
* Minimal when P, = P (square topology) or at least when they have most of their
factors in common
e I/ scales as 0(@)

* Per each tick
1. Data transfer for A and B between grid processors neighbors
2. Local multiplication and accumulation
=» Communication and computation overlap Ib

* The volume of communicated data by each processor scales as 0(1/\/?) A

* Two buffers per each processor for matrices A and B used for
communication and computation |‘

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Overview

aNew 2.5D Algorithm

aComparison with DBCSR Cannon’s algorithm

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

2.5D Algorithm

* Decompose data in 2D processor grid P = Pp + P,

e Same as existing DBCSR algorithm
—

P

—. . L

3 VLN

e 1 < L < /P isthe number of layers (L = 1 is the 2D algorithm)

* Each processor evaluates L local C parts

e Communicate 4 and B and reuse them for local C evaluations,
i.e. less communications

* Computation runsin a 3D grid

~ | |

E. Solomonik and J. Demmel. 2011. Communication-optimal parallel 2.5D matrix multiplication and LU factorization algorithms.
In European Conference on Parallel Processing. Springer, 90-109.

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

2.5D Algorithm Example

 Computation on a 2 x 4 processors grid
* Use virtual topology A(2 X 4) and B(4 X 4)

* 4 ticks
e [= 2,i.e.2x2x2 computational grid
I S 2 _ _

S, PP .
1| 1 Cyit=A11Bys 1. Cy3+=A;3B3;

B A - Cyt=hs By, Reuse 4
1|3 C1+=Ag,B5, 3. Cpat=A; 4B, 5
1| 4 Ci3t=A;,B,3 4. Cqt=Ag 4By,
|
|] " 6 A and B communications
: Exchange C: 1 communication)

2 per processor (8 in the 2D
| per processor :
! algorithm)
|
|

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

2.5D Algorithm Requirements

* Virtual topology case
 mx = max(Pg, P-) and mn = min(Pg, Pc), mx multiple integer of mn and
mx < mn?
=> Layers along the largest grid dimension

 Examples with L = 2
9 9x2
) 10x5=>»5x5x2

e Square topology
* L square number and Py integer multiple of VL
=> Layers along the both grid dimensions

e Examples with L = 4
9 9x9
©10x10=>5x5x4

=» By construction P/L is a square number

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

2.5D Algorithm Considerations (1)

* Requires O(L) more memory per processor with respect previous DBCSR

algorithm
* L buffers to store partial C (it was 1) A

» max(2,vL) + 2 buffers to communicate/cache A and B (it was 4)

* The volume of communicated data for A and B scales as 0(1/\/PL), i.e.
reduced by a factor VL

1

= Trading memory for communications, i.e. reduce the
volume of exchanged data by locally caching matrices

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

2.5D Algorithm Considerations (2)

* . — 1 communications of partial C per each processor to get
everything in the right processor A

* Total amount of data to communicate (Sy is the size of the

matrix X)

.
—(Sa +SB) +(L—-1)S¢

VI V

N —

~~ C panels
A, B panels

A* For the sparse case S; > S, g, therefore the C data
exchange can be dominant for large L A

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Overview

a One-sided MPIl implementation

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

One-Sided MPI Implementation

* Initial local data for matrices A and B organized in memory

pools
* Reused between multiplications
* Reallocation only if the required size is larger than actual size

* Create MPl Windows attached to the memory pools
* Avoid unnecessary creation/free of the windows when there is
no reallocation of the memory pools

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Previous VS New DBCSR

MPI Implementation

* Previous: implementation for the Cannon’s algorithm based on
Point-to-Point communications (mpi isend/mpi irecv)
* New: use RMA passive target to access the data in the initial
position (mpi rget)
e Read-only data, no neighbor communications
* One more buffer per A and B to store the initial data
* New implementation requires less synchronization during the

multiplications
e Just check the communication request on the receiver

* Overall the new implementation is more flexible

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Overview

a Performance

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Benchmarks

e 3 real benchmarks taken from the CP2K simulation framework
(http://www.cp2k.org)

cpgk

Average Occupancy (%) 0.06
Block size 23 x 23 6 X6 32x32
Multiplications 193 1198 10

* Test on Piz Daint @ CSCS (CRAY XC30, Sandy Bridge + NVIDIA K20x)

* Single rank per node and 8 OpenMP threads + GPU
 CRAY MPI + DMAPP for fast RMA communicatons

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

http://www.cp2k.org/

Strong scaling results

* PTP = Point-to-Point, i.e. previous DBCSR implementation
* OSL = One-sided with L layers, i.e. new DBCSR implementation

s o H20-DFT-LS SE Dense
NOGeS 5P 0S1 052 0S4 0S9 | PTP _OS1__ 052 0S4 089 | PTP_0S1__ OS2 084 089
200 | 325 298 260 - - | 558 500 459 - - | 428 430 439 - -
DBCSR 400 | 212 184 - 148 - |39 310 - 310 - |221 219 - 236 -
execution time 729 | 155 137 - - 117 | 310 246 - - 314 | 133 133 - - 155
(seconds) 1296 | 136 120 - 8 92 | 282 205 - 199 254 | 112 109 - 105 116
2704 | 99 8 - 55 - | 249 178 - 172 - | 108 100 - 97 -
00 Solid bars: PTP/OS1
180 Shaded bars: PTP/min(OSL)

1.60

In average:
* H20O-DFT-LS: OSL (L > 1) fastest

1.40

E‘. 122 Eﬁé I I e S-E: OS1 fastest
0.80 AN BER RER RER RR * Dense: no significant speedup
 MAN NN NEN NEN HR
200 400 729 1296 2704 As expected speedups improve with

#nodes higher number of nodes

= H20-DFT-LS = S-E = Dense

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Strong scaling results considerations

* Correlate speedups with message size of A and B communications and
computation (PTP, OS1)

— 100 H20-DFT-LS:

E 90 =» Communication @ VS Computation @

5 80 = Communication limited

% ;g | =>» Improve performance with OSL (L > 1)

E 50 - * S-E:

% 40 - =» Communication @ VS Computation @

: 0 =>» OS performs very well with small messages

20 -

10 - =» No communication limited already with OS1

o 200 400 729 1296 2704 ’ Dense:
nodes = Communication @ VS Computation ®
M H20-DFT-LS MS-E M Dense = No communication limited

 Memory footprint under control (<8GB per processor)

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Overview

0 Conclusion and outlook

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

Conclusion and Outlook

* Introducing the 2.5D multiplication algorithm in DBCSR for sparse matrix-
matrix multiplications improves the performance with respect to previous

DBCSR implementation by reducing the volume of exchanged data
* The speedup becomes larger when we use more processors, up to 1.8x
* One-sided MPI communications gives better performance and it is also more flexible
than Point-to-point communications

* The project will be further extended under a new PASC project (2017-2020)
e Tensor algebra, more details at the tomorrow POSTER session
* We are looking for a postdoc, if you are interested (or you know a possible candidate)
please talk to me or my colleagues

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

References

Urban Borstnik et al., Sparse matrix multiplication: The distributed block-compressed sparse
row library, Parallel Computing, 2014, Volume 40, Issues 5-6, pp 47-58

Ole Schutt et al., GPU Accelerated Sparse Matrix Matrix Multiplication for Linear Scaling
Density Functional Theory, chapter in “Electronic Structure Calculations on Graphics
Processing Units”, John Wiley and Sons, ISBN 9781118661789

Proceeding of this conference

http://dbcsr.cp2k.org Thanks!
http://cp2k.org Questions?

Thanks to CSCS for providing access to Piz Daint, and
the PASC project for funding the activity

26/06/2017 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch)

